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Abstract

A finite-volume time-domain algorithm using least square method with a well-posed perfectly matched layer (PML) has
been developed for the time-domain solution of Maxwell’s equations. This algorithm uses the unstructured grids to obtain
good computational efficiency and geometric flexibility. A novelty cell-wise data reconstruction scheme based on least
square method is derived to achieve second-order spatial accuracy. A well-posed PML is applied to truncate computational
domain by absorbing outgoing electromagnetic waves. The explicit Runge–Kutta scheme is employed to solve the semi-
discrete Maxwell’s equations. Several numerical results are presented to illustrate the efficiency and accuracy of the
algorithm.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Since the Maxwell’s equations were established in 1873 [1,2], there have been considerably interests in the
development of efficient techniques for solving Maxwell’s equations. Analytical methods can provide fast solu-
tion and allow users to foresee the effects and trend of the solution according to individual parameters in the
formulas. However, there are many geometric and physical limitations restricting the analytic models from
general applications. The classical integral based solution technique [3], as unchallenged as they are for pure
scattering problems, are less appealing for broadband applications and problems including penetration, com-
plex materials and random effects. Finite element technique [4] can, at significant cost, successfully address
some of these concerns but does so assuming monochromatic waves. This suggests that one turns the attention
to time-domain methods for solving Maxwell’s equations.

The most popular algorithm used in solving Maxwell’s equations in time domain is undoubtedly finite dif-
ference time-domain (FDTD) method [5–7]. The simplicity, robustness and reasonable accuracy of FDTD
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method has propelled this method to be widely used and extended. In spite of its popularity, however, the
main disadvantage with FDTD is its reduced accuracy when modeling curved and discontinuous objects.

In 1989, Shankar et al., developed a body-fitted non-orthogonal grid method called finite-volume time-
domain (FVTD) method [8]. In recent years, FVTD method has been used successfully in computational fluid
dynamics (CFD) [9–12] and computational electromagnetics (CEM) [13–20]. This method is used to solve the
integral form of the conservation law with cell averages of the conservative variables as the unknowns. A
reconstruction for each cell is obtained in terms of unknowns at neighboring cell. The flux integral for each
face is evaluated by the reconstructed solution in two cells and an approximate Riemann solver. More
recently, FVTD method was further refined and extended to unstructured grid [21–24]. With the unstructured
grid technology, grid generation for complex geometries can be completely automated. However, due to the
unstructured nature of grid, how to obtain a nonsingular stencil in data reconstruction becomes a key
problem.

In this paper, we propose a FVTD algorithm using least square (LS) method with a well-posed perfectly
matched layer (PML). The novelty LS method is derived for cell-wise data reconstruction to achieve sec-
ond-order spatial accuracy. To model unbounded problems where electromagnetic waves propagate in an
open region, the well-posed PML is applied to efficiently truncate the computational domain by absorbing
outgoing electromagnetic waves. Accuracy, dispersion and stability of this algorithm are analyzed in detail.
Several numerical results demonstrate good efficiency and accuracy.

2. Numerical scheme

2.1. Finite-volume discretization

We restrict our descriptions to two-dimensional cases although extension to 3D is straightforward. Consider
an isotropic, conductive, inhomogeneous medium with electric permittivity e, magnetic permeability l and con-
ductivity r. For the 2D TMz (transverse magnetic to z) polarization, Maxwell’s equations take the form
Q
oq
ot
þr � F ðqÞ þ Dq ¼ 0 ð1Þ
in which
Q ¼
e 0 0

0 l 0

0 0 l

264
375; q ¼

Ez

Hx

H y

264
375; F ¼

�Hy H x

0 Ez

�Ez 0

264
375; D ¼

r 0 0

0 0 0

0 0 0

264
375: ð2Þ
In finite-volume scheme, we first need to discretize the whole computational domain into small control vol-
umes according to the problem geometry and material distribution. For geometric flexibility, consider each
control volume as straightsided triangle cell. Then integrating (1) in an arbitrary control volume, we can
obtain:
Q
oq
ot

dS þ
X3

i¼1

n̂i � F idli þ DqdS ¼ 0 ð3Þ
where dS is the area of the control volume, n̂i is the unit outward normal of edge i and dli is the length of
edge i. Each control volume has a cell-averaged vector q, which is assumed to be located at the cell barycenter.
Let us consider choices of the numerical flux Fi. As this flux is responsible for connecting the solution between
two adjacent control volumes, its choices are clearly important.

One nature condition is that the resulting scheme must be consistent. In other words, the exact solution
must satisfy the scheme when refining the grid. For general problem, an upwind flux is a good choice, namely,
n̂ � F ¼
�n̂� ðZ~Hþn̂�~EÞð1ÞþðZ~H�n̂�~EÞð2Þ

Zð1ÞþZð2Þ

n̂� ðY~E�n̂�~HÞð1ÞþðY~Eþn̂�~HÞð2Þ

Y ð1ÞþY ð2Þ

24 35 ð4Þ
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where the superscript (1) and (2) denote two adjacent control volumes with normal direction n̂ pointing from
control volume (1) to control volume (2), and~Eð1Þ, ~H ð1Þ, ~Eð2Þ, ~H ð2Þ are electromagnetic fields at both sides of the
common edge.

2.2. Data reconstruction using least square method

In order to evaluate the flux through an edge between two adjacent control volumes, we need to know elec-
tromagnetic fields at both sides of the common edge. This can be done through data reconstruction. A least
square method is used in data reconstruction. In the following, we give data reconstruction schemes according
to the different material distribution.

(1) Consider the same medium parameters between the control volume 0 and three control volumes around,
i.e. control volume 1, 2 and 3, as shown in Fig. 1.
In this case, we employ the Taylor expansion to implement data reconstruction. Given arbitrary field
variable /ðx; yÞ, we can obtain:
/j ¼ /0 þ /xðxj � x0Þ þ /yðyj � y0Þ ðj ¼ 1; 2; 3Þ ð5Þ
in which /0 ¼ /ðx0; y0Þ, /j ¼ /ðxj; yjÞ, /x ¼ o/=ox and /y ¼ o/=oy. ðxl; ylÞðl ¼ 0; 1; 2; 3Þ is the barycen-
ter coordinates of lth cell. Therefore, the gradients of /ðx; yÞ are constructed by the following least
square reconstruction2 3
/x

/y

" #
¼ A

/1 � /0

/2 � /0

/3 � /0

64 75 ð6Þ
where
A ¼ 1

L

Iyy �Ixy

�Ixy Ixx

� �
x1 � x0 x2 � x0 x3 � x0

y1 � y0 y2 � y0 y3 � y0

� �
ð7Þ

Ixx ¼
X3

j¼1

ðxj � x0Þ2 Iyy ¼
X3

j¼1

ðyj � y0Þ
2 Ixy ¼

X3

j¼1

ðxj � x0Þðyj � y0Þ ð8Þ

L ¼ IxxIyy � I2
xy ð9Þ
(2) Consider the control volume 0 adjacent to PEC. Here we implement data reconstruction according to
two different cases, as shown in Fig. 2. For clear description, the edge j of the control volume 0 denotes
με,

με,

με,

με,
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Fig. 1. Same medium between the control volume 0, 1, 2 and 3.
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Fig. 2. The control volume 0 adjacent to PEC: (a) an edge adjacent to PEC and (b) two edges adjacent to PEC.
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the common edge between the control volume 0 and j.
For the first case, without generality, suppose the control volume 1 located in PEC, as shown in Fig. 2a.
At the midpoint of edge 1 of control volume 0, we implement the boundary conditions, i.e.,
Ez ¼ 0 ð10Þ
nxHx þ nyHy ¼ 0 ð11Þ
For electric field reconstruction, we only need to substitute /1 ¼ 0 and the midpoint coordinates of the
edge 1, i.e. ðxb

1; y
b
1Þ, into (6). For the magnetic field reconstruction, we have
A �

oH ð0Þx
ox

oH ð0Þx
oy

oH ð0Þy

ox

oH ð0Þy

oy

266666664

377777775
¼

�nxH ð0Þx � nyH ð0Þy

H ð2Þx � H ð0Þx

H ð3Þx � H ð0Þx

H ð2Þy � H ð0Þy

H ð3Þy � H ð0Þy

266666664

377777775
ð12Þ
where H ðjÞs ðs ¼ x; yÞ represents the magnetic field at the barycenter of control volume j, and
A ¼

nxðxb
1 � x0Þ nxðyb

1 � y0Þ nyðxb
1 � x0Þ nyðyb

1 � y0Þ
ðx2 � x0Þ ðy2 � y0Þ 0 0

ðx3 � x0Þ ðy3 � y0Þ 0 0

0 0 ðx2 � x0Þ ðy2 � y0Þ
0 0 ðx3 � x0Þ ðy3 � y0Þ

26666664

37777775 ð13Þ
We use LS method to solve oH ð0Þx
ox

oH ð0Þx
oy

oH ð0Þy

ox
oH ð0Þy

oy

h iT

, i.e.,
oH ð0Þx
ox

oH ð0Þx
oy

oH ð0Þy

ox

oH ð0Þy

oy

266666664

377777775
¼ ðATAÞ�1AT

�nxH ð0Þx � nyH ð0Þy

H ð2Þx � H ð0Þx

H ð3Þx � H ð0Þx

H ð2Þy � H ð0Þy

H ð3Þy � H ð0Þy

266666664

377777775
ð14Þ
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For the second case, suppose the control volume 1 and 2 located in PEC, as shown in Fig. 2b. Similar to
the first case, we can obtain:
Fig. 3.
contro
oH ð0Þx
ox

oH ð0Þx
oy

oH ð0Þy

ox

oH ð0Þy

oy

266666664

377777775
¼ A�1

�n1xH ð0Þx � n1yH ð0Þy

�n2xH ð0Þx � n2yH ð0Þy

H ð3Þx � H ð0Þx

H ð3Þy � H ð0Þy

266664
377775 ð15Þ
in which
A ¼

n1xðxb
1 � x0Þ n1xðyb

1 � y0Þ n1yðxb
1 � x0Þ n1yðyb

1 � y0Þ
n2xðxb

2 � x0Þ n2xðyb
2 � y0Þ n2yðxb

2 � x0Þ n2yðyb
2 � y0Þ

ðx3 � x0Þ ðy3 � y0Þ 0 0

0 0 ðx3 � x0Þ ðy3 � y0Þ

26664
37775 ð16Þ
Here ðxb
1; y

b
1Þ and ðxb

2; y
b
2Þ are the midpoint coordinates of the edge 1 and 2, respectively, and nis (s = x, y) is

s-component of unit outward normal of the edge i.
(3) Consider the different medium in the control volume 0, 1, 2 and 3. Here we still divide into two different

cases, as shown in Fig. 3.
For the first case, suppose different medium in the control volume 0 and 1, as shown in Fig. 3a. At the
midpoint of the edge 1 of control volume 0, we implement the boundary conditions, i.e.,
Eð0Þz ¼ Eð1Þz ð17Þ
� nyH ð0Þx þ nxH ð0Þy ¼ �nyH ð1Þx þ nxH ð1Þy ð18Þ
lðnxH ð0Þx þ nyH ð0Þy Þ ¼ l1ðnxH ð1Þx þ nyH ð1Þy Þ ð19Þ
where the superscript (i) denotes the control volume i.
Considering the continuous tangential component of electric field, i.e. (17), we can still use (6) for the
electric field reconstruction. For the magnetic field reconstruction, we will have
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Different medium in the control volume 0, 1, 2 and 3: (a) different medium in control volume 0 and 1 and (b) different medium in
l volume 0, 1 and 2.
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A �

oH ð0Þx
ox

oH ð0Þx
oy

oH ð0Þy

ox

oH ð0Þy

oy

oH ð1Þx
ox

oH ð1Þx
oy

oH ð1Þy

ox

oH ð1Þy

oy

2666666666666666666664

3777777777777777777775

¼

nyðH ð1Þx � H ð0Þx Þ � nxðH ð1Þy � H ð0Þy Þ
nxðl1H ð1Þx � lH ð0Þx Þ þ nyðl1H ð1Þy � lH ð0Þy Þ

H ð2Þx � H ð0Þx

H ð3Þx � H ð0Þx

H ð2Þy � H ð0Þy

H ð3Þy � H ð0Þy

H ð4Þx � H ð1Þx

H ð5Þx � H ð1Þx

H ð4Þy � H ð1Þy

H ð5Þy � H ð1Þy

266666666666666666664

377777777777777777775

ð20Þ
where
A ¼

nyx10
b nyy10

b �nxx10
b �nxy10

b �nyx11
b �nyy11

b nxx11
b nxy11

b

nxlx10
b nxly10

b nylx10
b nyly10

b �nxl1x11
b �nxl1y11

b �nyl1x11
b �nyl1y11

b

x20 y20 0 0 0 0 0 0

x30 y30 0 0 0 0 0 0

0 0 x20 y20 0 0 0 0

0 0 x30 y30 0 0 0 0

0 0 0 0 x41 y41 0 0

0 0 0 0 x51 y51 0 0

0 0 0 0 0 0 x41 y41

0 0 0 0 0 0 x51 y51

26666666666666664

37777777777777775
ð21Þ
where Sij ¼ Si � Sj and Sij
b ¼ Sb

i � SjðS ¼ x; y; i; j ¼ 1; 2; 3; 4; 5Þ. The gradients of Hx and Hy in the con-
trol volume 0 and 1 can be together obtained using LS method.

For the second case, we can similarly obtain:
A � U ¼ B ð22Þ

in which
U ¼ oH ð0Þx
ox

oH ð0Þx
oy

oH ð0Þy

ox
oH ð0Þy

oy
oH ð1Þx

ox
oH ð1Þx

oy
oH ð1Þy

ox
oH ð1Þy

oy
oH ð2Þx

ox
oH ð2Þx

oy
oH ð2Þy

ox
oH ð2Þy

oy

h iT

ð23Þ

B ¼

n1yðH ð1Þx � H ð0Þx Þ � n1xðH ð1Þy � H ð0Þy Þ
n1xðl1H ð1Þx � lH ð0Þx Þ þ n1yðl1H ð1Þy � lH ð0Þy Þ

n2yðH ð2Þx � H ð0Þx Þ � n2xðH ð2Þy � H ð0Þy Þ
n2xðl2H ð2Þx � lH ð0Þx Þ þ n2yðl2H ð2Þy � lH ð0Þy Þ

H ð3Þx � H ð0Þx

H ð3Þy � H ð0Þy

H ð4Þx � H ð1Þx

H ð5Þx � H ð1Þx

H ð4Þy � H ð1Þy

H ð5Þy � H ð1Þy

H ð6Þx � H ð2Þx

H ð7Þx � H ð2Þx

H ð6Þy � H ð2Þy

H ð7Þy � H ð2Þy

2666666666666666666666666666664

3777777777777777777777777777775

ð24Þ
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A ¼

n1yx10
b n1yy10

b �n1xx10
b �n1xy10

b �n1yx11
b �n1yy11

b n1xx11
b n1xy11

b 0 0 0 0

n1xlx10
b n1xly10

b n1ylx10
b n1yly10

b �n1xl1x11
b �n1xl1y11

b �n1yl1x11
b �n1yl1y11

b 0 0 0 0

n2yx20
b n2yy20

b �n2xx20
b �n2xy20

b 0 0 0 0 �n2yx22
b �n2yy22

b n2xx22
b n2xy22

b

n2xlx20
b n2xly20

b n2ylx20
b n2yly20

b 0 0 0 0 �n2xl2x22
b �n2xl2y22

b �n2yl2x22
b �n2yl2y22

b

x30 y30 0 0 0 0 0 0 0 0 0 0

0 0 x30 y30 0 0 0 0 0 0 0 0

0 0 0 0 x41 y41 0 0 0 0 0 0

0 0 0 0 x51 y51 0 0 0 0 0 0

0 0 0 0 0 0 x41 y41 0 0 0 0

0 0 0 0 0 0 x51 y51 0 0 0 0

0 0 0 0 0 0 0 0 x62 y62 0 0

0 0 0 0 0 0 0 0 x72 y72 0 0

0 0 0 0 0 0 0 0 0 0 x62 y62

0 0 0 0 0 0 0 0 0 0 x72 y72

266666666666666666666666666666666664

377777777777777777777777777777777775
ð25Þ
Similarly, the gradients of Hx and Hy in the control volume 0, 1 and 2 can be obtained using LS method.
From derivation above, we can know that due to the consideration of the boundary conditions, the dimen-
sions of gradient equations of Hx and Hy are correspondingly increased. However, as the matrix A only
depends on the geometries and materials, the least-square inversion may be done in preprocessing stage.
This greatly increases computational efficiency. For a practical problem, on the other hand, boundary con-
ditions are not considered in most of the control volumes. Therefore, introduction of boundary conditions
into the gradient equations of Hx and Hy not only promises good accuracy but also keeps original compu-
tational speed. In order to clearly show the efficiency of our method, we make a comparison between our
method and discontinuous galerkin method (DGM) [25]. The efficiency of our method can be approxi-
mately given as N 2

d � N t, in which Nt is the number of all control volumes and Nd is the dimension of matrix
A. For most of control volumes belong to the first case, Nd is approximately equal to 3. The efficiency of
DGM can be given as N 2

n � N t, in which Nt is the number of all control volumes and Nn is the number of nodal
points in each volume. In two-dimensional case, Nn is set as 6 to obtain solution with two-order spatial
approximation accuracy. By comparison, the efficiency of our method is better than that of DGM.

2.3. Well-posed PML

A key issue in time-domain solution is the introduction of an absorbing boundary condition to truncate the
unbounded medium to enable the solution in a finite computational domain without introducing noticeable
reflections from the computational edge [26–28]. Here we adopt the unsplit-field well-posed PML formulations
[28].
o eH x

ot
¼ � 1

l
oEz

oy
þ ðwx � wyÞð eH x � wxQxÞ ð26Þ

o eH y

ot
¼ 1

l
oEz

ox
þ ðwy � wxÞð eH y � wyQyÞ ð27Þ

oEz

ot
¼ 1

e
o eH y

ox
� o eH x

oy

" #
� wx þ wy þ

r
e

� �
Ez � wxwy þ

r
e
ðwx þ wyÞ

h i
P z �

r
e

wxwyKz ð28Þ
where
oQx

ot
¼ eH x � wxQx

oQy

ot
¼ eH y � wyQy ð29Þ

oP z

ot
¼ Ez

oKz

ot
¼ P z ð30Þ
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Note that this nonsplit PML is well-posed because (26)–(30) remain the same symmetric hyperbolic system as
the original Maxwell’s equations plus some lower-order terms [26,27]. When wx = wy = 0, the PML equations
reduce to Maxwell’ equations in a regular medium.

2.4. Time integration

In this paper, we adopt 2N-storage, M-stage Kth -order Runge–Kutta scheme [29] to integrate (1) in each
control volume. Expressing (1) as
oq
ot
¼ f ðt; qÞ ð31Þ
We denote qn as q(tn) where tn ¼ nDt and Dt is the time step size. The low-storage form of Runge–Kutta meth-
od is given as
u0 ¼ qn

8j 2 ½1;M �
kj ¼ ajkj�1 þ Dtf ððnþ cjÞDt; uj�1Þ
uj ¼ uj�1 þ bjkj

�
qnþ1 ¼ uM ð32Þ
where choices of coefficients aj, bj and cj can be found in [29].

2.5. Analysis of accuracy, dispersion and stability

Firstly, let us consider the accuracy of FVTD algorithm above. Suppose one-dimensional Maxwell’s equa-
tions in lossless and homogeneous medium
Q
oq
ot
þr � F ðqÞ ¼ 0 ð33Þ
in which
Q ¼
e 0

0 l

� �
; q ¼

Ez

H y

� �
; F ¼

�Hy

�Ez

� �
: ð34Þ
Assume that a uniform mesh xi ¼ iDx is used to solve (33), and q is the cell-averaged state-variable at the
ith cell ½xi; xiþ1�. In the ith cell, the gradient of state-variable q can be obtained by using Least-Square method,
i.e.
oq
ox
¼ qiþ1 � qi�1

2Dx
ð35Þ
This is equivalent to two-order MUSCL method [9]. Therefore, the space discretization is second-order accu-
racy. Temporal integration approximation of (33) is done using a low-storage Runge–Kutta scheme. When a
two-stage second-order Runge–Kutta scheme is used, the overall numerical scheme is a second order accuracy
in space and time. When a five-stage fourth-order Runge–Kutta scheme is adopted, the overall numerical
scheme is a second order accuracy in space and fourth order accuracy in time.

In the following, we derive the numerical dispersion relation of FVTD in detail. Without generality, the
two-order central difference approximation is used for time derivatives in (33). Substituting (35) into (33),
we can obtain:
e
oEz

i

ot
Dxþ Hy

iþ2 � 6Hy
iþ1 þ 6H y

i�1 � H y
i�2

8
þ Ez

iþ2 � 4Ez
iþ1 þ 6Ez

i � 4Ez
i�1 þ Ez

i�2

8lc
¼ 0 ð36Þ

l
oH y

i

ot
Dxþ Ez

iþ2 � 6Ez
iþ1 þ 6Ez

i�1 � Ez
i�2

8
þ H y

iþ2 � 4Hy
iþ1 þ 6Hy

i � 4H y
i�1 þ H y

i�2

8ec
¼ 0 ð37Þ
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Moreover, assume plane monochromatic traveling-wave trial solutions as follows:
Ez;n
i ¼ E0ejxnDte�jkiDx ð38Þ

H y;n
i ¼ H 0ejxnDte�jkiDx ð39Þ
Substituting (38) and (39) into (36) and (37), and approximating time derivatives by central difference
yield
A11 A12

A21 A22

� �
E0

H 0

� �
¼

0

0

� �
ð40Þ
where
A11 ¼
eDx
Dt

j2 sin
xDt

2

� �
þ 1

4lc
cos

xDt
2

� �
ðcos 2kDx� 4 cos kDxþ 3Þ ð41Þ

A22 ¼
lDx
Dt

j2 sin
xDt

2

� �
þ 1

4ec
cos

xDt
2

� �
ðcos 2kDx� 4 cos kDxþ 3Þ ð42Þ

A12 ¼ A21 ¼
j

4
ð6 sin kDx� sin 2kDxÞ ð43Þ
In order to ensure (40) with non-zero solution, the numerical dispersion relation can be obtained as follows:
Dx
cDt

� �2

2 sin
xDt

2

� �2

¼ cos
xDt

2

� �2
cos 2kDx� 4 cos kDxþ 3

4

� �2

þ 6 sin kDx� sin 2kDx
4

� �2

þ Dx
2cDt

ðj sin xDtÞðcos 2kDx� 4 cos kDxþ 3Þ ð44Þ
The numerical wave vector k in (44) can be solved by using iterative Newton’s procedure [6]. It can be seen
from (44) that the numerical wave vector k is complex for real angular frequency x. Therefore, there is an
unphysical behavior called parasite in FVTD [30]. The phenomenon is mainly because electric fields and mag-
netic fields are un-staggered in FVTD scheme. However by a lot of numerical experiments, we can know that
the parasite has no serious effect on numerical solution, when appropriate time step and spatial mesh are cho-
sen. The mainly reason is that when Dx! 0, (44) can be reduced to
Dx
cDt

� �
2 sin

xDt
2

� �
¼ ðkDxÞ ð45Þ
Furthermore when Dt! 0, we can obtain the exact dispersion relation from (45) as follows:
x
c
¼ k ð46Þ
Finally, we give the stability analysis of FVTD algorithm in detail. The explicit forward Euler scheme is
adopted to approximate time derivative in (33). Therefore we can obtain:
Ez;nþ1
i ¼ Ez;n

i �
Dt
eDx

H y;n
iþ2 � 6Hy;n

iþ1 þ 6Hy;n
i�1 � H y;n

i�2

8
� cDt

Dx
Ez;n

iþ2 � 4Ez;n
iþ1 þ 6Ez;n

i � 4Ez;n
i�1 þ Ez;n

i�2

8
ð47Þ

H y;nþ1
i ¼ H y;n

i �
Dt

lDx
Ez;n

iþ2 � 6Ez;n
iþ1 þ 6Ez;n

i�1 � Ez;n
i�2

8
� cDt

Dx
H y;n

iþ2 � 4H y;n
iþ1 þ 6H y;n

i � 4H y;n
i�1 þ Hy;n

i�2

8
ð48Þ
Similarly, assume the following plane monochromatic traveling-wave trial solutions:
Ez;n ¼ En
0e�jkx ð49Þ

H y;n ¼ Hn
0e�jkx ð50Þ
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Substituting (49) and (50) into (47) and (48), after simplification, we can obtain:
Ez;nþ1
i

H y;nþ1
i

" #
¼ B �

Ez;n
i

H y;n
i

� �
¼

B11 B12

B21 B22

� �
Ez;n

i

H y;n
i

� �
ð51Þ
in which
B11 ¼ B22 ¼ 1� cDt
4Dx
ðcos 2kDx� 4 cos kDxþ 3Þ ð52Þ

B12 ¼ �
j
4

Dt
eDx
ð6 sin kDx� sin 2kDxÞ ð53Þ

B21 ¼ �
j
4

Dt
lDx
ð6 sin kDx� sin 2kDxÞ ð54Þ
The stability requires qðBÞ 6 1, where qðBÞ is spectral radius of matrix B. The eigenvalues of B can be deter-
mined analytically as
k ¼ B11 �
B12

g
ð55Þ
The maximum of k for all possible values of k is
jkmaxj ¼
2cDt
Dx
� 1

				 				 ð56Þ
If qðBÞ 6 1, then kmaxj j 6 1. Hence, this leads to stability limit as follows
cDt 6 Dx ð57Þ

Therefore, the explicit forward Euler scheme is stable when the CFL number cDt=Dx is less than 1. The general
stability condition of explicit Runge–Kutta scheme for two-dimensional and three-dimensional FVTD method
on arbitrary unstructured mesh can be found in reference [31].

3. Numerical results and discussion

In this section, we present some numerical examples to demonstrate the accuracy and efficiency of the
FVTD algorithm using LS method. All calculations were performed on a Pentium IV 3.0 GHz PC with
1GB memory.

3.1. Scattering by a perfectly electrical conductor (PEC) circular cylinder

Let us consider the plane wave scattering from a perfect conductor cylinder in free space. A plane wave is
incident along +x-axis on the cylinder. The radius of perfect conductor cylinder is 2m and the center of the
cylinder is set as origin. The exact frequency-domain solution of problem is [1]
Ez ¼
X1

n¼�1
J nðkqÞ � J nðkaÞ

H ð1Þn ðkaÞ
H ð1Þn ðkqÞ

" #
� einu�inp=2 ð58Þ
in which k ¼ 2pf =c is wave number in free space. The time solution can be obtained by Fourier transform of
frequency-domain solution. In this example we adopt 2930 triangles to mesh the whole computational domain
in order to obtain a resolution of 15 points of per wavelength (ppw). In our calculation Dt ¼ 1 ps and the
observation point is located at (�1.695,�1.816) m. Control volumes used in the calculation are shown in
Fig. 4a. The FVTD algorithm using LS method is implemented to calculate the scattering electric field Ez

at the observation point. Fig. 4b illustrates comparison between the result of this algorithm and the analytical
solution, showing the excellent agreement.

In order to further test the accuracy of this algorithm, we employ the FVTD algorithm using LS method to
recalculate the plane wave scattering from a perfect conductor cylinder. The variation of logarithm of relative
error with the points of per wavelength is given in Fig. 5. From Fig. 5, it can be clearly seen that relative error
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is decreased with increase of the points of per wavelength and the second-order accuracy can be obtained in
our algorithm.
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Fig. 4. Plane wave scattering from a PEC circular cylinder in free space: (a) grid and (b) comparison of solution of the FVTD + LS with
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3.2. Scattering by a dielectric circular cylinder

The scattering by a dielectric circular cylinder with er ¼ 4:0 and lr ¼ 1:0 is computed by using FVTD + LS
algorithm. A plane wave is incident along the +x-axis on the cylinder. The radius of dielectric circular cylinder
is 2 m and the center of the cylinder is set as origin. The total number of control volumes is 3708 and the PPW
is 15. The time step Dt is set as 0.5 ps and the receiver is located at (�1.695,�1.816) m. Fig. 6a shows the con-
trol volumes in the dielectric circular cylinder. Fig. 6b demonstrates the comparison of the present algorithm
and analytical solution. The two curves are nearly graphically indistinguishable.

3.3. Ground penetrating radar (GPR) detection of buried object

Ground penetrating radar (GPR) is a noninvasive electromagnetic geophysical technique for subsurface
exploration, characterization and monitoring. It is used as a scientific tool in many areas such as geophysics
respecting, archeology and environmental engineering. GPR has been put in a variety of uses, especially in
detecting buried objects. Consider an application of FVTD + LS algorithm to GPR detection of buried
objects. In this example, the electric parameters of the earth are er ¼ 4 and lr ¼ 1 and r ¼ 0:002 s=m. Two
square PEC boxes are buried 1 m below the interface of air and earth, as shown in Fig. 7a. A plane wave
is incident along the y-axis. The time-domain waveform of electric field at the receiver (0.333,1.417 m) is cal-
culated. The comparison between the present algorithm and multi-domain pseudospectral time-domain
(PSTD) method [32] is shown in Fig. 7b. In Fig. 7c–f, we show the snapshots of the electric field at t = 60,
80, 120 and 160 ns over the whole simulation space.

4. Conclusions

A FVTD algorithm using LS method with a well-posed PML has been developed to model electromagnetic
scattering by 2D arbitrarily curved objects in this paper. Considering computational efficiency and geometric
flexibility, the unstructured grids are employed in this algorithm. The novelty LS method is used to derive cell-
wise data reconstruction. The Runge–Kutta explicit scheme is employed to solve the semi-discrete Maxwell’s
equations. Accuracy, dispersion and stability of this algorithm are analyzed in detail. Several numerical exam-
ples confirm the capability and accuracy of the algorithm.
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